Pages Menu
Facebook
Categories Menu

Posted by on Sep 10, 2013 in Background, Equal Temperament, Just Intonation, Recordings, Septimal Harmony, The Lattice | 2 comments

Premature Nostalgia: Making Friends With Equal Temperament

I just recorded a new song, and it’s a perfect example of how equal temperament and just intonation can get along together.

Here’s the cut:

 

Reading this blog might give you the impression that I’m “against” equal temperament and “for” just intonation, or untempered music.

True, discovering untempered music has been like sailing to a new world. It’s delicious to have 20 or more notes to work with instead of 12, each with its own individual personality.

Equal temperament, however, is a fabulous invention. The lattice of fifths and thirds does not quite repeat. If you start with any note and go in any direction, you will soon encounter almost the same note again, but it will be off by a comma, a small interval, from the original note.

There are no two notes tuned exactly alike on the entire infinite lattice.

Equal temperament flattens out the lattice just a hair so it does repeat. Now there are only twelve notes to work with, and they imply the untempered ones in the ear. This innovation makes lots of things possible in music. Beethoven and Mozart could not exist without it.

It’s sometimes said that equal temperament and just intonation are incompatible with each other, because the notes will be out of tune. I say they can get along fine, you just have to show ’em who’s boss.

I submit for your consideration: Ray Charles.

Ray Charles’ piano is an equal tempered instrument. Ray Charles’ voice is most certainly not. He is singing the exact resonant notes, those blue notes, all tuned just like a gospel choir, which is what he grew up loving. Ray is boss. His voice establishes the tonality of the song. The backup singers, the horns and the standup bass all agree, this song is in the harmonic pocket, and it resonates.

That leaves the piano slightly out of tune, but who cares?

Notes that are slightly out of tune don’t necessarily sound bad — that’s the basis of the “chorus effect.” No two singers in a choir are exactly in tune with each other, and the resulting complexity is a huge part of the sound of the choir.

So if the tonality is established in the ear, maybe the equal tempered notes, which are only a bit off after all, will just enrich the sound a bit.

Listen to how “Hit the Road, Jack” starts off. First the piano intro. ET. Then the horns kick in, and they start to establish the soul of the tune. Then come the backup singers, that gospel choir. When Ray’s voice finally joins them, the pocket is waiting for him, and he proceeds to own it. The piano is now a background instrument.

I think that’s the secret. Put untempered instruments up front, and ET instruments more in the background. This asserts the untempered tonality in the ear.

Playing acoustic guitar and singing is a great playground for this. The acoustic guitar is, in its bones, an equally tempered instrument. Fretted instruments drove the adoption of ET in Europe, even before keyboards did. The voice is the archetypal untempered instrument. It can do anything.

If the guitar is boss, the song will be in equal temperament. If the voice is boss, you can establish any tonality you want (blues, Gypsy, whatever), and the guitar will tag along. You can retune it in the ear, just like Ray retunes his piano.

Here are some tricks for making friends with acoustic guitar (or any tempered instrument):

1) Sing solidly in tune, with the tonality coming from you, and not from the guitar. Don’t follow the guitar, lead it. The song is the melody, it is your voice, and you are accompanying that voice with guitar notes.

I like to think of the guitar as playing the grid lines on the map. The guitar notes are perfectly equally spaced, and are excellent reference points. The guitar tells me where I am. We completely agree on one note, the tonic. I use the tonic on the guitar as my true home base.

My voice is playing the actual territory.

2) Sing louder than the guitar.

This isn’t all that easy. The guitar is projecting outward, so it sounds louder to the audience than it does to me. The voice is right there in my head, so it sounds quieter to the audience than it does to me. If I sound balanced to myself, the audience will hear way more guitar than vocal. I hear this all the time at open mics.

I’ve found that in an acoustic setting, I have to sing twice as loud as my guitar (from my own point of view) for it to sound balanced out in front of me.

It gets easier with more JI instruments. In “Premature Nostalgia,” the fretless bass and backing vocals are all in strict just intonation. The guitar is truly a backing instrument, and the tonality of the song feels secure.

3) There is a third, more subtle thing you can do to bring the guitar closer to just intonation. The most clearly out-of-tune note on acoustic guitar is the major third. It’s already 14 cents sharp even when perfectly tuned, and the slightest unintentional string bend will take it into some really grating territory. Choose chord voicings that de-emphasize major thirds, and your guitar will sound a lot sweeter. I wrote an article illustrating this effect, here.

Read More

Posted by on Aug 26, 2013 in Consonance, Just Intonation, Recordings, The Lattice | 0 comments

100 Girlfriends, Part 2

My new song video, Real Girl, contains many examples of consonance and dissonance, tension and resolution. In my last post, I extracted a phrase from the song and slowed it way down to illustrate how the bass and melody dance, creating and resolving tension in several different ways. Here is the last half of that analysis.

When we last left our heroes, they were on the 4 and b6, quite consonant relative to each other, but still unresolved because the ear remembers where the tonic is. Here is that clip:

Now the melody moves back to the 7. This interval, against the 4, is the dreaded tritone, the devil’s interval, and it’s dissonant indeed.

Then the bass moves up to the 1, lessening the dissonance, and the melody soon joins it, and all is consonant.

But there is still a sense of incompleteness, even though both the bass and melody are smack on the tonic, the most consonant interval of all. What’s up?

The answer is that the ear remembers that the root is still the 4, and we aren’t quite home yet. Getting there requires a cadence, or final resolution. Notice that in this next clip the bass note never moves, but the harmonies and the melody signal that the root has now moved to the 1 and we are home. The bass note has magically changed character.

Here is the complete sequence, annotated.

Next: The Blue Tritone

Read More

Posted by on Aug 20, 2013 in Just Intonation, Recordings, The Lattice | 1 comment

Real Girl, Animated

Here is my third stop-motion animation of a full song.

Real Girl uses a custom nine-note scale. It occupies the Southeast quadrant of the lattice, the zone of the natural minor, with two added notes — the 7, which allows for a major V chord in the progression, and the 7b5, a blue note that is showcased often in the melody.

This scale contains a sharp dissonance, between the b6 and the 7.  I go back and forth between those two notes a lot, with a stop on the 1 in between to help ease the transition.

Watch how the melody and bass chase each other around. In the next few blog posts, I’ll slow this dance down, and show how the polarity flips create tension and resolution. When the melody is below and to the left of the bass, the energy is reciprocal, tense. Then one or the other moves so that the melody is above and to the right, the energy becomes overtonal, and the tension resolves.

Another fun thing to watch is the alternating bass. Roots and fifths are right next to each other on the lattice. The red lens swings like a pendulum throughout the verses.

Read More

Posted by on Aug 7, 2013 in Consonance, Equal Temperament, Just Intonation, Septimal Harmony, The Lattice, The Notes | 0 comments

More Mirror Twins

Mirror twins are pairs of intervals, exactly opposite each other on the lattice.

The two intervals are reciprocals of each other, which means their ratios are flipped — if one is 5/3, the other is 3/5.

Harmonic distance is the same for each interval — the only difference is polarity. Listening to mirror twin pairs gives a good idea of what polarity sounds like.

The clearest example is the fifth/fourth pair, multiplying and dividing the tonic by 3.

Beautiful, consonant notes, one with overtonal energy, and the other with reciprocal energy.

The next closest pair is the major third / minor sixth. This has a different flavor. Now the tonic is multiplied and divided by 5.

The overtonal third feels stable and restful, though not quite as much so as the fifth. These notes are a bit farther from the center than the 5 and 4. The reciprocal sixth sounds more dissonant than the 4.

The next closest note to the center is the septimal flatted seventh, or harmonic seventh. The ratio of this note is 7/1, and its mirror twin is 1/7. I have not yet consciously used the mirror-seventh, and it’s not on my drawing of the lattice. The note is the septimal major second, at 231 cents, a dissonant interval indeed. The yellow lens shows where I would put it on the lattice.

Oy! That should put to rest the idea that just intonation is all about consonance! The septimal major second is nastier than anything equal temperament has to offer. I like the word “untempered” for this music because it better captures the wild and wooly nature of JI. “Just Intonation” sounds a bit stuffy to me, and the natural intervals of whole number ratios are anything but academic, they are burned in at a very basic level. Equal temperament is brilliant, but it’s actually the headier and less visceral of the two. IMO.

The next pair is a little further out — each note requires two moves on the lattice.

The ratios are 9/1 and 1/9. I still hear the 2 as stable, though it is less consonant than the previous notes. The b7- is suitably dissonant. It cranks up the tension in dominant-seventh-type chords, the workhorse tension-resolution chords of classical music.

I hear the effect of both tension and resolution diminishing somewhat, as tonal gravity gets weaker farther from the tonic.

These last two videos each contain a minor seventh. One is overtonal, the other reciprocal. The septimal flatted seventh, or harmonic seventh, is a stable, resolved note, the signature of barbershop harmony.

Septimal sevenths abound in this music, and they are sweet and consonant and stable.

The b7-, on the other hand, is dissonant and tense. It makes the ear want to change.

In equal temperament, these two notes are played exactly the same. ET weakens and obscures the difference, but it still can come through because of context.

The common “… and many more” tag, sung at the end of Happy Birthday, is a great example. That last note, “more,” is a harmonic seventh, 7/1, the stable, beautiful barbershop note at 969 cents. If you play “and many more” on a piano, the ear will hear the last note as a septimal seventh, only with less impact, because it is very sharp, at 1000 cents.

Next: Why Can We Hear Harmony?

Read More

Posted by on Aug 3, 2013 in Consonance, Just Intonation, The Lattice, The Notes, Tonal Gravity | 0 comments

Mirror Twins

For every note on the lattice (except the 1), there is another note, the same distance away from the center and exactly opposite it. The harmonic moves for the two notes are the same, but the directions are opposite.

Mirror twins are reciprocals of each other. Flipping a note’s ratio upside down will produce its twin.

Listening to these mirror twins helps demonstrate polarity.

The simplest ratios on the lattice, the ones with the smallest numbers in them, are 3:1 and 1:3, the perfect fifth and perfect fourth. Here they are:

Tonal gravity is strong here close to the sun. The fifth sounds remarkably resolved, like it’s part of the drone. In fact, this note shows up so strongly in the natural overtone series that it is part of the drone. If you listen carefully to that tonic drone by itself, you can hear it. The following video shows a 5 by itself, followed by the straight drone on the 1. I hear the fifth appear again, quietly, after the drone has a few seconds to settle in and bloom.

The fifth says, “You’re home, relax.”

The fourth also shows where home is, but in a very different way. Instead of saying, in effect, “Home is here, come on,” It is saying “Home is over there, now go.”

Our built-in audio processor is always looking for mathematical relationships between notes so we can tell which frequencies belong together, identify different sound sources and orient ourselves in our surroundings. I think this is why we hear harmony and why it sounds like a journey — it’s a part of our built-in orientation software.

Three cycles for every one is a “right” ratio. It strongly says, “These frequencies belong together, they are being made by the same thing.” But the ratio is upside down, 1/3, the exact opposite of the “right” sound, 3/1. It’s the shadow version of the 5, yin to its yang.

The 5 feels like this:

200px-Stable_equilibrium.svg copy

The 4 feels like this:

200px-Unstable_equilibrium

The beautiful stability of the 5, contrasted with the equally beautiful instability of the 4, is what I mean by polarity.

Next: Polarity

Read More

Posted by on Jul 29, 2013 in Consonance, Just Intonation, The Lattice, The Notes, Tonal Gravity | 0 comments

Polarity Experiment

In the last post I did a consonance experiment, listening to intervals with wider and wider spacing.

In that experiment, I kept the axis (3) and direction (multiplication, overtonal) the same, and increased the distance.

This time I’ll keep the axis and the distance the same, and switch direction. Each illustration will compare a note with its mirror twin, its reciprocal.

First up is the strongest polarity flip there is, the perfect fourth and fifth. One divides the tonic by 3, the other multiplies it by 3.

The 4 is clearly unstable, it wants to move. The 5 is clearly stable. If a song ends with this interval, I will feel completely satisfied.

The next matchup is the b7- and the 2. The b7- is the crucial note that provides the tension in dominant-type seventh chords and makes their resolution so satisfying. Here it is in undiluted form.

The 2 is fairly stable. Quite a few songs end on this note, and there is a pretty good sense of resolution, maybe with some wistfulness mixed in.

The two notes are about equally harmonious, and of opposite polarity. This is the same pattern as the 4 and 5, only weaker.

Moving outward, we get the b3- and 6+ pair:

The pattern continues — now both notes are rather dissonant, with the b3- weakly unstable and the 6+ weakly stable. It would be rather unsettling to end a song on the 6+, but maybe you could get away with it.

Here are the next two:

These are interesting. They are dissonant, all right, and the b6- is unstable and the 3+ is stable. But I actually hear the polarity a little more strongly than the last pair.

I think my ear is trying to interpret these notes as out-of-tune versions of the b6 (a strongly unstable note) and the 3 (strongly stable).

How is my ear to interpret this 3+ note, the Pythagorean major third? Can I even hear a ratio of 81/64? Maybe not well enough to really recognize it.

Perhaps the ear “decides” that it’s simpler to read this strange note as a badly tuned version of a simpler interval, one I am familiar with. So I hear it as an out-of-tune 5/4 instead of an in-tune 81/64.

This is why equal temperament works, as Mathieu demonstrates so well in Harmonic Experience. A painting doesn’t have to be exactly straight on the wall for the eye to interpret it as straight. Thank goodness! In the same way, a note doesn’t have to be exactly in tune to be heard as that note. The ear is willing to accept “close enough” and hear it as the real thing, though the consonance will not be as good.

Maybe the part of the mind that processes this stuff is like a quantum computer, taking in the sound, trying out all possibilities at once, and spitting out the “most likely” interpretation, which would be the solution with the lowest “potential energy,” the one that is closest to the center, just like real gravity.

We’re probably too far out now to really recognize these intervals as what they are, but for the heck of it:

Suitably nasty, and now the sense of polarity is pretty much gone, I can’t hear it.

Finally:

The Pythagorean spine, the sequence of fifths, has come full circle — almost. The two notes are 24 cents apart, a Pythagorean Comma. All that remains of tonal harmony at this distance is a generic sort of dissonance. I hear no polarity at all. The tonal gravity field is too weak to detect.

Here’s one more video to bring it all back home. I start to smell the stables at about the b3-/6+, and the sense of direction gets rapidly stronger from there.

Next: Harmonic Distance

Read More
Page 2 of 912345...Last »