Pages Menu
Facebook
Categories Menu

Posted by on Oct 27, 2013 in Consonance, Just Intonation, The Lattice, Tonal Gravity | 2 comments

Tonal Gravity and the Major Scale

In my last post, I proposed a simple way to graph tonal gravity against the octave.

Overtonal notes, generated by multiplying, are restful, stable — they have positive polarity, pulling toward the center. Reciprocal notes, generated by division, are restless, unstable — they push. I call this negative polarity. Mixed-polarity notes have both, and I’ve chosen to simply add their overtonal and reciprocal components together to get the total polarity.

Here again is the graph of the 13 most central notes of the lattice.

Tonal Gravity 13-01

The stable notes are gravity wells, and the unstable ones are peaks. Melodies and harmonies dance in this gravity field. Higher points represent tension, lower ones resolution, and the lower they are, the more resolved and stable. The tonic major triad, most stable of all, occupies the lowest spots — 1, 3 and 5.

The polarity map of the major scale looks like this:

Tonal Gravity Major Scale-01The notes are all overtonal except the 4, which is strongly reciprocal, and the 6, which is mixed and slightly unstable.

Here’s a split screen video showing the major scale, against a tonic drone, on both the lattice and the octave. This is an example of how the lattice serves as a Rosetta Stone, a translator between harmonic and melodic space.

Can you hear the push/pull quality of the notes? Each note has its own feeling against the steady 1.

Next: A Theory of Everything

Read More

Posted by on Oct 22, 2013 in Consonance, Just Intonation, The Lattice, Tonal Gravity | 0 comments

Putting Some Numbers on Tonal Gravity

I believe the sensation of tonal gravity is the most important driver of tension and resolution in tonal music, music that has a central key note.

The tonic is like a sun, creating a gravitational field around it. The lattice is a beautiful map of this gravitational field, in harmonic space.

Tonal gravity acts like real gravity, in that it’s strongest close to the center. The farther out you get, the weaker the effect.

There is a difference, though — unlike physical gravity, which only attracts, tonal gravity has two polarities — it can attract or repel. Briefly, if an interval is generated by multiplication, it will pull toward the tonic, as though to say, “You’re going the right way, you’re just not there yet.” If the interval is generated by division, the sensation is more of a push — it still points to the tonic, but now it’s saying “It’s over that way, go!”

Overtonal notes are stable, reciprocals are unstable. Reciprocal intervals create tension, overtonal ones create resolution.

The article on Polarity goes into detail, with examples.

The lattice can be divided into four quadrants, each with a characteristic tonal gravity. The northeast quadrant is entirely overtonal. This is the world of Major/Dominant: overtonal thirds, overtonal fifths.

The southwest quadrant is entirely reciprocal. Every interval is generated by division.

The northwest and southeast are zones of mixed polarity, overtonal on one axis and reciprocal on the other one. Here’s a map of the quadrants and the compass points:

Quadrants-1024x768

Green is overtonal, stable, tonal gravity pulls.

Red is reciprocal, unstable, tonal gravity pushes.

Blue is mixed, gravity pulls on one axis and pushes on the other.

For a couple of years now, I’ve been chewing on how to represent the tonal gravity of the lattice mathematically. To describe what I experience, the equations should behave as follows:

  1. Overtonal intervals have one polarity, and reciprocals have the opposite polarity,
  2. Gravity gets weaker the farther one gets from the center, and
  3. Multiplying or dividing by 2 does not affect tonal gravity. This is to account for the octave phenomenon — going up or down an octave does not change a note’s position on the lattice.

Here’s my latest approach. I’m not presenting this as some kind of truth — but it nicely matches my own perceptions, and it leads to some interesting graphs. Any input you may have is welcome — feel free to comment, or email me from the Contact page. Here goes:

I will call the direction and magnitude of the tonal gravity field P, for Polarity.

Intervals are expressed as a ratio of two numbers, numerator and denominator, N/D. For example, a perfect fifth is 3/1, or N=3, D=1.

  1. For purely overtonal notes, of the form N/1: P = 2/N.
  2. For purely reciprocal notes, of the form 1/D: P = -2/D.
  3. For compound notes, with both overtonal and reciprocal components, add the overtonal and reciprocal gravities together: P = 2/N – 2/D.
  4. The ratio of the tonic, the 1, is 2/1.

I’d better explain that last one, because it would seem at first glance that the ratio of the tonic would be 1/1.

But what is the actual tonic? It has no specific pitch. It is not a ratio. It is an abstraction, the anvil upon which all notes are forged, the sound of one hand clapping. If a song is in the key of A, all of the A’s from subsonic to ultrasonic are actually octaves of the tonic, created by multiplying by two. It is impossible to say that any one of these A’s is “the” tonic — the tonic is “A-ness,” that thing which connects the numbers 110, 220, 440, 880, to infinity in both directions. I submit that the “1” of the lattice, which is a real pitch (or set of pitches, an octave apart, just like all the other notes) is in fact the octave, and its ratio is 2/1.

Here’s another drawing of the inner lattice. Instead of the note names, I’ve filled in the ratios, and the value of P.

Polarity central lattice-01

The green notes all have positive polarity, getting weaker as they get farther out. The red ones have negative polarity, also fading with distance. The blue ones have different polarities. Sometimes the overtonal part dominates, sometimes the reciprocal.

The b3, just southeast of the tonic, is a mixed-polarity note. Its ratio is 3/5, combining an overtonal fifth, P = .67, with a reciprocal third, P = -.40. If I just add the two gravities together, I get a positive net polarity of .27.

This makes sense. The minor third is considered to be a stable interval, though not as stable as the major third.

Both the major and minor triads consist entirely of stable intervals with positive P, which helps explain their special place in music.

So: now that I have some values for P, I can graph the tonal gravity of these 13 inner notes against the octave, in order of pitch.

Positive polarity is at the bottom, so that the feel is the same as real gravity. Unstable notes are up on mountain peaks, and when they resolve to stable ones they slide down into the gravity wells of the stable notes.

Tonal Gravity 13-01

There is that tasty melody zone I mentioned a few posts back. The whole region from 2- to 3 is stable.

The 4 is an isolated peak, and it’s easy to imagine a 4 sliding into the pocket of the 3, or the 5. This is what happens when a Sus4 chord resolves.

The 7 is lightly stable but hanging on by its fingernails — it’s called the leading tone, because it “wants” so badly to resolve to the 1. The tonal gravity of the 7 is usually thought of in terms of melodic pull — here’s a graphic demonstration that it has harmonic pull as well.

There is an unstable region from b6 through b7, with all the mirror twins of that stable melody zone. A melody will sound unstable, unresolved as long as it stays in that region.

This is the gravitational field in which the music moves, a sort of tonal skate park.

Next: Tonal Gravity and the Major Scale

Read More

Posted by on Aug 22, 2013 in Consonance, Recordings, The Lattice, Tonal Gravity | 0 comments

100 Girlfriends

There is a passage, in my song Real Girl, that clearly showcases both kinds of dissonance — the kind that comes from harmonic distance, and the kind that comes from reverse polarity.

This melodic passage occurs many times in the song, and it contains a rather dizzying series of tensions and resolutions. My friend Jody Mulgrew, who has an exquisite sense of pitch, experienced actual nausea the first time he heard the song. He told me, “I was wondering how to tell my friend Gary that I didn’t like his new song. Then, before the chorus, it started to sweeten up, and when the song was over I immediately hit the ‘replay’ button. I realized it was just tension and resolution.”

I think my friend was experiencing what I call tonal vertigo. His comment spurred some of my thinking on the nature of harmony, how it may be a byproduct of our orientation software. The “100 girlfriends” section is a roller coaster ride in the tonal gravity field. Here it is in its original form:

Now to slow it way down and take it apart.

The first dissonant melody move is to the 7. The interval is a major seventh, down a half step in pitch, and the harmonic distance is great enough (3×5=15) that the note is quite dissonant. But the bass, alternating between 1 and 5 as so many bass lines do, quickly moves to resolve the dissonance.

Note that there is still an unresolved, unfinished feeling. Even though everything you can hear is beautifully consonant, the ear still remembers that the real root of the chord is the 1. This memory is crucial to tonal music.

The next move creates a different kind of dissonance. This is the tension of reverse polarity.

First the melody moves to the 1. This note is right next to that 5 in the bass, and beautifully harmonious. But there is tension, because it’s a reciprocal note. The way to get from a 5 to a 1 is to divide by 3 — it’s one move to the left on the lattice.

Then it makes a crazy move, to the b6, that gives me vertigo. Not only is this note distant from the bass note (a factor of 15), but it’s the reciprocal version of the major seventh, its mirror twin, the minor second. You’re dividing by 15, rather than multiplying. Here’s the article that explains why this is such an important difference.

If this weren’t enough, the b6 is also a reciprocal of the root. Remember, even though the bass is the 5, the root is still the 1. The b6 is the mirror twin of the 3, an intensely reciprocal note. So the tension is very high.

And, in two moves, the melody has covered a lot of harmonic territory, all in the reciprocal, Southwest direction. No wonder Jody felt nausea! It’s an E-ticket ride.

DisneyETicket_wbelf

Once again, the bass moves to save the day. The chord changes too — that 4 in the bass is the new root. The melody note magically becomes a minor third, not fully consonant, not fully resolved, but a lot better.

In the next post, the famous tritone! Then full resolution.

Next: 100 Girlfriends, Part 2

Read More

Posted by on Aug 15, 2013 in Consonance, The Lattice, The Notes, Tonal Gravity | 0 comments

One More Mirror Pair

I’m almost done with the next full-song video. In the meantime, here’s one more pair of mirror twins for consideration.

The 2- is a common melody note in my songs, and in the blues. It goes well with the blue note 7b3 — there is an extremely common melody that goes 7b3, 2-, 1. It’s a darker, more dissonant note than its comma sibling, the 2.

The b7 is dissonant and gorgeous — check out the sequence at the end of this post.

Each note is a compound of three legs on the lattice — two fifths, or a factor of 9, and a major third, a factor of 5. By the logic of the last post, the short leg should predominate, which would make the 2- slightly overtonal and stable, and the b7 slightly reciprocal and unstable.

This proves out when I listen to the video. Even though the 2- is distant from the center, and quite dissonant, it still feels stable. The tonal gravity field is “pulling” rather than “pushing.”

I’m setting up here for a map of the tonal gravity field. I think I can put some numbers on this stuff. Coming soon. I’ll use that new song animation as a basis — it’s full of fleeting dissonances and polarity flips.

Next: Real Girl, Animated

Read More

Posted by on Aug 14, 2013 in Consonance, The Lattice, The Notes, Tonal Gravity | 0 comments

A Mirror Quad

In the last few posts, I’ve been exploring mirror twins — notes at the same harmonic distance from the center, but of opposite polarity.

The notes explored so far are 3/1, 5/1, 7/1, 9/1, and their reciprocals, 1/3, 1/5, 1/7 and 1/9. The 9/1 and 1/9 are made up of two legs on the lattice, x3 and x3.

The next overtonal note out from the center is the major seventh, or 7. Its ratio is 15/1, or x3, x5.

The 7 has its mirror twin too, the b2-, at 112 cents. Its ratio is 1/15.

Here is how they sound:

For me, the pattern continues. The 7 is stable, but less so than the notes we’ve heard so far, and it’s getting dissonant as well, because it’s farther from the center. The b2- is both dissonant and unstable.

These notes each traverse two legs of the lattice, a 3 and a 5. The 7 is two legs “up,” or multiplying, and the b2- is two “down,” or dividing.

What if one stick goes up and the other one down?

These notes are the minor third, 3/5, and the major sixth, 5/3. They are compounds of overtonal and reciprocal energy.

How will this affect stability and instability? I’ll guess that since 3 is a shorter distance than 5 is, and closer to the center means stronger gravity, the factor of 3 will dominate the blend.

So 3/5, the minor third, should lean toward the overtonal, and 5/3, the major sixth, should lean toward the reciprocal.

This hypothesis is supported by the long tradition that the minor third is a stable note, less so than the major third but OK to end a song with.

That is indeed what I hear, although it’s less clear than it is with earlier intervals.

All four of these intervals use the same prime factors, and cover the same harmonic distance. The difference between them is polarity.

Next: One More Mirror Pair

Read More

Posted by on Aug 6, 2013 in Consonance, The Lattice, Tonal Gravity | 0 comments

Polarity

The following video compares the perfect fifth with the perfect fourth.

These notes are the next-door neighbors of the tonic. They are equally close to the center. They are both harmonious. Yet there is a great difference in their character.

The difference between these two intervals is polarity.

I learned this term from W.A. Mathieu, in his amazing book “Harmonic Experience.”

Polarity is the main driver of tension and release in tonal music. I think it’s much more important than harmonic distance, the other component of consonance.

Here’s how I think polarity works:

Almost all sounds are actually a bundle of waves, of different frequencies. The frequencies in these bundles tend to vibrate at multiples of each other — 2x, 3x, 4x, 5x some base frequency — a harmonic series.

Our ears are highly attuned to such relationships. They help us figure out which frequencies belong together, so we can analyze them and identify the source. If we hear two frequencies in lockstep, three cycles to one, it is very likely they come from the same object.

I think this is why we can hear harmony. It’s a byproduct of our built-in orientation software. The overtone series of a sound is a powerful source of information about the object that made it. The harmonic content tells us whether it’s a barking dog or a friend or rustling leaves. Something in us sorts out and analyzes many harmonic series at once, in real time, identifying sound sources, locating them in space, and even sensing their texture at a distance. It’s a phenomenal processor.

So the processor recognizes the 3-wiggles-to-1 dance of the perfect fourth. But something is wrong — the 4 does not belong in the overtone series of the 1. The overtone series is generated by multiplication, not division.

This is a strange input for the mighty processor.

  • The 4 has to belong to the 1, because the two are in step with each other at three beats for one. In nature, that’s a dead giveaway.
  • But the 4 can’t belong to the 1, because the ratio is the wrong way around — natural sounds do not contain 1/3 in their overtone series.
  • Maybe the 1 actually belongs to the 4. The 1 is three times the 4, so if the 4 were the base, all would make sense.
  • But every other clue, all the harmonics in the drone (and, importantly, the listener’s memory), are pointing to the 1, hollering “This is the basic frequency!”

What’s a supercomputer to do?

I feel this sensation as unrest or instability, a need for something to change. Either the 4 needs to resolve to an overtonal note such as the 5 or major 3, or the root needs to change. Moving the root to the 4 will resolve the dissonance, introducing a new reciprocal tension — now the root “wants” to go to the 1, because the ear remembers. There are videos of this here.

On the lattice, there are two basic polarities, overtonal and reciprocal. Some notes combine both energies.

Overtonal notes are created by multiplying the base frequency. They appear in the natural harmonic content of sounds. They sound stable, restful, resolved — more so the closer they are to the center of the lattice, where tonal gravity is stronger. Pure overtonal notes are in the Northeast quadrant of the lattice.

Reciprocal notes are created by dividing the base frequency. The mind recognizes them as being related to the base frequency, but they do not appear in its natural overtone series. They sound unstable, restless, tense — and, like the overtonal ones, the effect is stronger closer to the center.

Polarity is our sense of the tonal gravity field. It is how we orient ourselves in harmonic space.

Next: More Mirror Twins

Read More
Page 1 of 3123