Pages Menu
Categories Menu

Posted by on Mar 14, 2014 in Equal Temperament, Just Intonation, The Lattice | 3 comments

A Harmonic Journey: ET and JI Compared

The Harmonic Lattice can be viewed as a map of harmonic space. Music moves in harmonic space, just as it moves in melodic space (the world of scales and keyboards). The two spaces are very different from each other.

In melodic space, such as a piano keyboard, when two notes are close together, it means they are close in pitch.

In a harmonic space, such as the lattice, when two notes are close together, it means they are harmonically related.

“Harmonically related” means that one note can be converted into the other note by multiplying and dividing by small whole numbers. A note vibrating at 100 cycles per second is closely related to a note at 300 cycles per second. In melodic space, these two notes are far apart, but in harmonic terms they are right next door to each other — they harmonize.

In my video, Flying Dream, I animated the movement of one of my songs on the lattice. Now I’ve animated a composition of W. A. Mathieu’s.

Mathieu is the author of Harmonic Experience, an astonishing book that takes music back to its origins in resonance and pure harmony, and then uses the lattice concept to bring that harmonic understanding forward into the world of equal temperament. For me, the book opened the study of music like a flower.

The lattice, and my stop-motion animations, have given me a sort of musical oscilloscope. Instead of the music being some sort of black box, I can see inside it, get a visual image of what is going on harmonically. The new tool has made songwriting, improvising and arranging much easier.

I’ve animated Example 22.10 from the book. It’s intended to be an illustration of unambiguous harmony — the chord progression moves by short distances on the lattice, so it is clear to the eye and ear where you are. I think it’s a beautiful piece of music in its own right, a one-minute tour of a huge area of the lattice. It uses 28 different notes!

There are two versions of the video. The first one, in ET, has a soundtrack of Allaudin Mathieu playing the piece on his beautifully tuned piano. This is perfect equal temperament. It uses twelve notes to approximate the twenty-eight notes that the piece visits.

For the second one, in JI, I retuned the piano to the actual pitches of the lattice notes. Now, magically, the piano has all 28 notes. There is a whole new dimension to the music. In the JI version, I feel:

  • Slight vertigo when the music moves quickly
  • Satisfaction when a spread-out (tense) pattern collapses to a compact (resolved) one
  • A great sense of homecoming at the end
  • Stronger consonance and dissonance than in the ET version.

The four voices, from lowest to highest, are red, green, orange and yellow. It’s fun to follow one voice at a time.

This lattice is notated differently. It’s my usual system, but with letters instead of numbers. C is the tonic.

 

Read More

Posted by on Oct 22, 2013 in Consonance, Just Intonation, The Lattice, Tonal Gravity | 4 comments

Putting Some Numbers on Tonal Gravity

I believe the sensation of tonal gravity is the most important driver of tension and resolution in tonal music, music that has a central key note.

The tonic is like a sun, creating a gravitational field around it. The lattice is a beautiful map of this gravitational field, in harmonic space.

Tonal gravity acts like real gravity, in that it’s strongest close to the center. The farther out you get, the weaker the effect.

There is a difference, though — unlike physical gravity, which only attracts, tonal gravity has two polarities — it can attract or repel. Briefly, if an interval is generated by multiplication, it will pull toward the tonic, as though to say, “You’re going the right way, you’re just not there yet.” If the interval is generated by division, the sensation is more of a push — it still points to the tonic, but now it’s saying “It’s over that way, go!”

Overtonal notes are stable, reciprocals are unstable. Reciprocal intervals create tension, overtonal ones create resolution.

The article on Polarity goes into detail, with examples.

The lattice can be divided into four quadrants, each with a characteristic tonal gravity. The northeast quadrant is entirely overtonal. This is the world of Major/Dominant: overtonal thirds, overtonal fifths.

The southwest quadrant is entirely reciprocal. Every interval is generated by division.

The northwest and southeast are zones of mixed polarity, overtonal on one axis and reciprocal on the other one. Here’s a map of the quadrants and the compass points:

Quadrants-1024x768

Green is overtonal, stable, tonal gravity pulls.

Red is reciprocal, unstable, tonal gravity pushes.

Blue is mixed, gravity pulls on one axis and pushes on the other.

For a couple of years now, I’ve been chewing on how to represent the tonal gravity of the lattice mathematically. To describe what I experience, the equations should behave as follows:

  1. Overtonal intervals have one polarity, and reciprocals have the opposite polarity,
  2. Gravity gets weaker the farther one gets from the center, and
  3. Multiplying or dividing by 2 does not affect tonal gravity. This is to account for the octave phenomenon — going up or down an octave does not change a note’s position on the lattice.

Here’s my latest approach. I’m not presenting this as some kind of truth — but it nicely matches my own perceptions, and it leads to some interesting graphs. Any input you may have is welcome — feel free to comment, or email me from the Contact page. Here goes:

I will call the direction and magnitude of the tonal gravity field P, for Polarity.

Intervals are expressed as a ratio of two numbers, numerator and denominator, N/D. For example, a perfect fifth is 3/1, or N=3, D=1.

  1. For purely overtonal notes, of the form N/1: P = 2/N.
  2. For purely reciprocal notes, of the form 1/D: P = -2/D.
  3. For compound notes, with both overtonal and reciprocal components, add the overtonal and reciprocal gravities together: P = 2/N – 2/D.
  4. The ratio of the tonic, the 1, is 2/1.

I’d better explain that last one, because it would seem at first glance that the ratio of the tonic would be 1/1.

But what is the actual tonic? It has no specific pitch. It is not a ratio. It is an abstraction, the anvil upon which all notes are forged, the sound of one hand clapping. If a song is in the key of A, all of the A’s from subsonic to ultrasonic are actually octaves of the tonic, created by multiplying by two. It is impossible to say that any one of these A’s is “the” tonic — the tonic is “A-ness,” that thing which connects the numbers 110, 220, 440, 880, to infinity in both directions. I submit that the “1” of the lattice, which is a real pitch (or set of pitches, an octave apart, just like all the other notes) is in fact the octave, and its ratio is 2/1.

Here’s another drawing of the inner lattice. Instead of the note names, I’ve filled in the ratios, and the value of P.

Polarity central lattice-01

The green notes all have positive polarity, getting weaker as they get farther out. The red ones have negative polarity, also fading with distance. The blue ones have different polarities. Sometimes the overtonal part dominates, sometimes the reciprocal.

The b3, just southeast of the tonic, is a mixed-polarity note. Its ratio is 3/5, combining an overtonal fifth, P = .67, with a reciprocal third, P = -.40. If I just add the two gravities together, I get a positive net polarity of .27.

This makes sense. The minor third is considered to be a stable interval, though not as stable as the major third.

Both the major and minor triads consist entirely of stable intervals with positive P, which helps explain their special place in music.

So: now that I have some values for P, I can graph the tonal gravity of these 13 inner notes against the octave, in order of pitch.

Positive polarity is at the bottom, so that the feel is the same as real gravity. Unstable notes are up on mountain peaks, and when they resolve to stable ones they slide down into the gravity wells of the stable notes.

Tonal Gravity 13-01

There is that tasty melody zone I mentioned a few posts back. The whole region from 2- to 3 is stable.

The 4 is an isolated peak, and it’s easy to imagine a 4 sliding into the pocket of the 3, or the 5. This is what happens when a Sus4 chord resolves.

The 7 is lightly stable but hanging on by its fingernails — it’s called the leading tone, because it “wants” so badly to resolve to the 1. The tonal gravity of the 7 is usually thought of in terms of melodic pull — here’s a graphic demonstration that it has harmonic pull as well.

There is an unstable region from b6 through b7, with all the mirror twins of that stable melody zone. A melody will sound unstable, unresolved as long as it stays in that region.

This is the gravitational field in which the music moves, a sort of tonal skate park.

Next: Tonal Gravity and the Major Scale

Read More

Posted by on Jul 30, 2013 in Consonance, The Lattice, The Notes, Tonal Gravity | 2 comments

Harmonic Distance

Harmonic distance is the total length of the connection between two notes on the lattice, as measured on the solid lines. The more tinkertoy sticks you traverse to get from one note to the other, the greater the harmonic distance.

It’s not the same thing as melodic distance, which is a difference in pitch. Two notes can be far apart in harmonic space, but close together in melodic space, or vice versa. This post has a demonstration.

Each solid line on the lattice is a prime factor — 3, 5 or 7. A simple way to put a number on harmonic distance is to multiply together all the prime factors used in the ratio of the interval. Doesn’t matter if you’re multiplying or dividing by the factor, the distance is the same. Twos don’t count; these are octaves and they don’t add distance on the lattice.

The closest intervals on the lattice are the perfect fifth and perfect fourth. To get these intervals, you multiply or divide the original note by 3. The ratio of the fifth is 3/1, and the ratio of the fourth is 1/3. The harmonic distance is 3, in both cases.

The major seventh, or 7, is a more distant interval. Its formula is x3, x5, or 15/1, so its harmonic distance is 15.

The b2- is the reciprocal of the 7. Its formula is ÷3, ÷5, or 1/15, and it is equally distant. The polarity is opposite, but it’s the same distance away from the center.

There are two other notes at this same distance of 15 — the 6 and the b3. Their ratios are 5/3 and 3/5 respectively. They are reciprocals of each other, and have opposite polarities.

Here is the inner lattice, showing the ratios (without any factors of 2), and harmonic distances instead of the note names. The ratio of an interval defines it completely; it would make perfect sense to name the notes by their ratios alone (it’s been done).Harmonic Distance central lattice

 

In the consonance experiment from a few posts ago, I played intervals in order of harmonic distance, and sure enough, as they got further out, they got more dissonant. I used the Pythagorean axis (multiples of 3) to keep it simple. Pythagorean tuning is somewhat limited musically; harmonic distance increases so fast that there are very few consonant notes.

On the lattice of thirds and fifths, there are more consonant notes to play with. How would that same experiment sound, when you add in these new intervals?

I’ll stick with the overtonal, Northeast quadrant of the lattice. Every ratio involves multiplication only, so there is no reciprocal energy, and I’m not comparing apples to oranges. My intention is to test only one ingredient of consonance, the harmonic distance. The intervals travel away from the center, and back again. Listen and watch a couple of times, and hear what happens.

I think the pattern holds very nicely. At the very end, the #4+ with its distance of 45, I think the dissonance has lost some of its obnoxiousness. It does appear that as the distance gets big enough, both consonance and dissonance start to weaken. The ear has less to go on, the signal is weaker.

Also note how the other component of consonance, stability/instability, changes as we roam farther out and come home again. All these intervals are stable, since they are all overtonal. This sense of stability gets stronger the closer we are to home, as though the ear is receiving a stronger signal and is more and more sure of itself. I start to clearly hear the stability at the major seventh (15/1), and it quickly gets stronger from there on in.

Next: Mirror Twins

Read More

Posted by on Jun 21, 2013 in The Lattice, The Notes, Tonal Gravity |

The Power of the Seventh Chord

The V chord, the major chord based on the 5, is a powerful compositional tool. It points, very clearly and with a lot of tension, directly at the tonic. If you want to lead the ear to the I, the V chord is the top-of-the-line triad.

Why this is so is still a bit mysterious to me. It’s been discussed a lot. It seems to have both melodic and harmonic elements.

Melodies “like” to move short distances in pitch, and the move from the V to the I is elegant melodically. The 7, or major seventh, resolves up a half step to the 1. The major seventh is called a leading tone because of this very property. The 2 drops a whole step, also to the 1, and the 5 stays put.

In harmonic space, voices, especially roots, “like” to move short distances too. The shortest move of all is a fifth, and when the V goes to the I, the root moves down by a fifth. It seems natural that if the ear is anticipating the next chord, it will place its bet on the change that expends the least energy. All three notes could be seen as moving that same short distance, the easiest possible move.

I like to think of it in terms of tonal gravity. The tonic, the 1, is like a sun at the center of a solar system, and it exerts a gravitational pull. Moving away from it creates tension, collapsing into it creates resolution. Just as with gravity, the closer in you are, the stronger the force. The V is right next to the I, harmonically, so the tension is very strong.

The V chord isn’t the last word, however. It’s possible to crank it up, by adding another tense note.

P1080225

The 4 and the 5 are the closest notes to the 1, in harmonic space. These two notes have the strongest tonal gravity of all. Their effect is different — 5 is the strongest overtonal note, and 4 is the strongest reciprocal note. Both point straight at the tonic.

Melodically, the 4 is two half steps below the 5. This makes it a flatted or minor seventh, added to the V chord. So the final chord is called a V7.

Of all the notes we could add to the V chord, the 4 creates the most tension, and it’s pointed directly at the tonic. I say this is the source of the power of the dominant 7th chord.

In Be Love, I add even more tension before I’m through. The melody dances around, and right before the final resolution, it lands on the 6.

P1080237

I’ve added yet another tense note to the mix. It’s not as strong as the 4, but it jacks up the gravity another notch. The root is on 5, so the 6 is two half steps up from it melodically. This makes it a ninth chord — start with the basic major triad, and add a seventh and a ninth.

Now I’m set up as strongly as possible for a return to the tonic, and sure enough when the drop happens it lands with authority. I’m in major land now, and the chorus will feel entirely different from the verse.

Here’s the whole effect:

Next: To the Far Northwest

Read More

Posted by on Mar 6, 2013 in Just Intonation, The Lattice, The Notes | 0 comments

Rosetta Stone

Almost all Western music, including my own, lives in the world of tonal harmony. This means:

  • There can be, and usually are, multiple notes playing at the same time.
  • There is a key center, or tonic, around which the notes are arranged. The tonic doesn’t always sound — it’s an intangible presence, the home from which you leave on your harmonic journey, and to which you will hopefully return.

The multiple notes can have different functions:

  • Roots are the fundamental notes of chords. A G chord has its root on G. Roots are local centers that move the ear around the lattice as they change.
  • Harmonies flesh out the chord. In a G major chord, the harmony notes are B and D. They stake out more lattice territory and add definition to the chord. Is it a G major, minor, seventh? The harmonies establish this.
  • Melodies dance in the harmonic field set up by the tonic, roots and harmonies. They have more freedom than the others. Melodies travel fast and light, and though they can sing the same notes as the others, they can also travel farther afield, further embellishing the chord, or leading the ear toward the next chord in the progression, or lingering on the last one after it has changed.

All this action is happening in two musical spaces at once.

Piano-keyboard

Melodic space is the world of scales. It’s organized in order of pitch. The piano keyboard is a perfect representation of melodic space.

full lattice all-01

Harmonic space is the world of ratios. Multiply a note by a small whole number ratio, and you have moved a small distance in harmonic space. Multiply by large numbers, and you have moved a large distance. The lattice is a map of harmonic space.

The two worlds are not the same. Often, they are opposites. The perfect fifth is a small move harmonically but it’s a mile in the melody — bass singers have to jump all over the place in pitch. Small melodic moves tend to be big harmonic ones. A chromatic half step, the distance between the 3 and b3, is only 70 cents, less than the distance between neighboring keys on the piano. But on the lattice, it’s a long haul — down a third, down another third, and up a fifth.

Writing and arranging a song is sort of like designing (rather than solving) a crossword puzzle. There are two intersecting, independent universes, Up and Down. To design the puzzle, you work back and forth between the two, massaging them until they don’t conflict, and each one makes sense on its own.

All of the notes live in both harmonic and melodic space. They may have a foot in one more than the other — the roots tend to move small distances on the lattice, the melodies usually move small distances in pitch, and the harmonies tend to bridge the two, moving melodically while staking out the form of the music on the lattice. But every note moves in both spaces, all the time.

Rosetta_stone_(photo)A great advantage of the lattice is that it serves as a sort of Rosetta Stone, a bridge or translator between the two worlds.

The Rosetta Stone was carved in 196 BC and rediscovered in 1799. It immediately became famous because it repeats the same text three times, in three different languages. It was the key that allowed scholars to decipher Egyptian hieroglyphs.

The lattice bridges the two musical spaces by means of the patterns it presents to the eye.

When two or more notes are plotted on the lattice, they will form a particular visual pattern. Any time you see this pattern, no matter where on the lattice it is, the relationship between the notes of the pattern will be exactly the same, in both harmonic and melodic space.

3-01For example, this pattern shows an interval of a major third. The ratio of the frequencies of these two notes is 5/4 (or 5/2, or 5/1 — twos don’t count, they just shift the note by an octave). Any time you see two notes in this formation, no matter where they are, you know they have the following relationship to each other:

  • Harmonic space: When the notes are sounded simultaneously, they will have the characteristic sound of a pure major third.
  • Melodic space: When you move from one note to the other, you are traveling a distance of 386 cents, or about four semitones on the piano.

Getting familiar with these patterns, and learning to recognize them wherever they are, has made it easier for me to think in harmonic and melodic space at the same time, which makes writing and arranging music much easier.

Next: Tonal Gravity

Read More