Pages Menu
Categories Menu

Posted by on Aug 26, 2013 in Consonance, Just Intonation, Recordings, The Lattice | 0 comments

100 Girlfriends, Part 2

My new song video, Real Girl, contains many examples of consonance and dissonance, tension and resolution. In my last post, I extracted a phrase from the song and slowed it way down to illustrate how the bass and melody dance, creating and resolving tension in several different ways. Here is the last half of that analysis.

When we last left our heroes, they were on the 4 and b6, quite consonant relative to each other, but still unresolved because the ear remembers where the tonic is. Here is that clip:

Now the melody moves back to the 7. This interval, against the 4, is the dreaded tritone, the devil’s interval, and it’s dissonant indeed.

Then the bass moves up to the 1, lessening the dissonance, and the melody soon joins it, and all is consonant.

But there is still a sense of incompleteness, even though both the bass and melody are smack on the tonic, the most consonant interval of all. What’s up?

The answer is that the ear remembers that the root is still the 4, and we aren’t quite home yet. Getting there requires a cadence, or final resolution. Notice that in this next clip the bass note never moves, but the harmonies and the melody signal that the root has now moved to the 1 and we are home. The bass note has magically changed character.

Here is the complete sequence, annotated.

Next: The Blue Tritone

Read More

Posted by on Jul 22, 2013 in Consonance, Just Intonation, The Lattice, The Notes, Tonal Gravity | 0 comments

Consonance and Dissonance

I just passed the 10,000 photo mark on the stop motion animations, good thing I’m not hand-drawing them like Winsor McCay!

The one I’m working on, Real Girl, has a lot of dissonant notes in it. The melody ranges far from the roots and makes some slightly dizzying harmonic jumps. I want to use it as a framework for discussing consonance and dissonance. While it’s in progress, I want to lay down some groundwork.

The Wikipedia article Consonance and Dissonance is really thorough. Here’s a quote from the introduction:

In music, a consonance (Latin con-, “with” + sonare, “to sound”) is a harmonychord, or interval considered stable (at rest), as opposed to a dissonance (Latin dis-, “apart” + sonare, “to sound”), which is considered unstable (or temporary, transitional). In more general usage, a consonance is a combination of notes that sound pleasant to most people when played at the same time; dissonance is a combination of notes that sound harsh or unpleasant to most people.

This definition has two distinct concepts in it — the “stability” of a harmony, and whether the notes sound pleasant or unpleasant together. I used to think of consonance/dissonance as a linear spectrum, with consonant notes at one end and dissonant ones at the other.

After working with the lattice, and reading Mathieu, I now see consonance as having two distinct components, that do not necessarily track together:

  1. How the notes sound together, away from any musical context. The range would be from smooth and harmonious to rough and grating.
  2. The stability of the interval. Does it create a sensation of rest, or does it feel restless, ready to move?

I propose that these two qualities can be directly seen on the lattice as follows:

  1. The way the notes will sound when simply played together is a function of the distance between the notes in harmonic space (how far apart they are on the lattice). The farther apart the two notes are, the less harmonious they will sound when played together.
  2. The stability of the interval is a function of the direction of the interval on the lattice (whether it’s generated by multiplying, dividing, or a combination of the two). Intervals generated by multiplying (moving to the East and North on the lattice) are restful, those generated by dividing (moving West and South) are unstable and restless.

The interval quality is also powerfully affected by which primes (3, 5, 7) are used to generate the interval, but I hear this as a sort of flavor or color, rather than as consonance per se.

The first component, the sound of the notes simply played together, is a property of the interaction of those frequencies in the ear. It isn’t dependent on the musical context in which it appears.

The sense of stability or instability, on the other hand, depends entirely on context. This sensation comes from the direction of the interval, which implies that the interval must start somewhere (the tonic or root) and end somewhere (the harmony note), so as to have a direction. One note is home base, the other is an excursion from that base.

Here a couple of examples to show the difference.

The perfect fifth is the most consonant interval on the lattice that actually involves a distance. (Octaves and unisons are more consonant, but on the lattice, they cover no distance at all — multiplying the frequency of a note by 1 gives a unison, which is of course the same note, and multiplying or dividing by two gives an octave, which, by a miraculous quirk of human perception, also sounds like the same note, harmonically.)

To make a fifth, you multiply by 3. You can then then multiply or divide by 2 at will, (which doesn’t add any distance) to put it in the octave you desire. The frequencies of the two notes in this video are related by a ratio of 3:2. There is no context, just the two notes sounding together.

This is clearly a consonant interval. There is a smoothness, a harmoniousness to the sound that I imagine would be perceived as such by anyone in the world. Two notes in a ratio of 3:2 will sound like that no matter what the context.

So how do stability and instability enter in? It happens when there is a reference note, which can be the tonic (the main key center around which everything is arranged), a root (a local tonal center that changes from chord to chord), or even a bass note, which, if it is not the root of the chord, shifts the harmonic feel of the chord.

The music in this next video establishes that the tonal center is the 1, and then introduces the 1-5 interval.

The interval sounds stable; the ear does not crave a change. There is resolution.

In the next video, the music establishes a new tonal center in the ear. Now it sounds like the 5 is home. Listen to what happens when I introduce the very same 1-5 interval:

The interval is exactly the same, and the effect is quite different. There is tension. Something’s gotta move!

I can make this point more clearly by resolving the tension. Hear the unfinished quality, and how it resolves?

Aaaaah.

In the first video, home base is the 1, and the 5 is an overtonal note — that is, it is generated by multiplying the home note by 3. It sounds restful and stable.

In the second video, the tonal center is the 5, and the 1 is reciprocal, that is, it is generated by dividing by 3.

So the same exact interval can be stable or unstable according to harmonic context, even though the “degree of roughness” is the same. That’s why I think Wikipedia’s two-part definition is referring to two different things, which should be thought of separately.

Next: Consonance Experiment

Read More

Posted by on Jun 10, 2013 in Just Intonation, The Lattice, The Notes, Tonal Gravity |

Home

Tonal music is music that has a particular key center, or home note. Not all music is tonal, but most is, worldwide.

The key note is at the center of the lattice of fifths and thirds. All other notes are generated from this one. I call it the 1. It’s also called the tonic. When we say a song is “in the key of A,” we mean that A is the tonic.

This isn’t any particular A. In the key of A, every one of the ten or so A’s within the range of human hearing is a tonic, or perhaps more accurately some octave of the tonic. The tonic itself is an abstract concept, of “A-ness.”  In concert pitch, A is defined as a vibration of 440 cycles per second (called Hertz, or Hz), and any octave of this, up or down, is also a tonic. Thanks to a remarkable (and handy) quirk of human perception, multiplying or dividing a pitch by 2 does not change its essential character. So 220Hz is also an A, as are 110, 55, 27.5 — and 880, 1760 and so on forever.

The tonic doesn’t even have to be one of the 12 equal-tempered notes — it can be halfway between A and A#, and it will still work just as well. The rest of the notes are simply calculated from that home note. The resulting music will be in tune with itself, and will sound fine, even though it has no relation to concert (A=440) tuning. In learning songs from old recordings, I’ve found that many are in between two official keys. The instruments are tuned to each other, but not to any outside reference. They sound great.

The tonic sounds like home. The great driver of tonal music is the sense of departure from, and return to, home.

Be Love, like many tonal songs, starts right off with the tonic. It makes a statement, with the very first note: “This is where home is.”

Again and again throughout the song, the music departs from home, creating tension, and then returns to it, relieving the tension. The following clip contains two such homecomings, at 0:07 and again right at the end.

Then, finally, the song ends with the tonic. Ahhhh. Journey complete, the lattice has been explored, and after many adventures Sam Gamgee is back in Hobbiton.

Not all songs begin and end on the tonic. If you want the song to sound resolved, finished, end it on the tonic. If you want it to sound unresolved, unfinished, end it on another note. It’s a powerful tool. Listen to the end of Cream’s Sunshine of Your Love.

Have you ever had the experience of the audience clapping at the wrong time, in the middle of a song? It’s embarrassing!

Usually it happens when you pause for dramatic effect, and the audience thinks you are finished. You can send a strong signal that the song is not over by pausing on a chord that is clearly not the tonic. Then, when you do want the audience to clap, give them a big tonic chord and they’ll know what to do.

Next: The Compass Points

Read More

Posted by on Mar 12, 2013 in The Lattice, The Notes, Tonal Gravity | 2 comments

Cadences

A cadence is a chord progression that gives a sense of arrival or resolution.

One particular cadence, the V-I (or V7-I) is especially powerful. In classical music, a V-I cadence is practically mandatory at the end of a piece, and it is the biggest gun in the composer’s arsenal when changing keys, or modulating.

The following movie shows a I-V-I progression. It starts on the I to establish the tonic, then there’s tension, then resolution. The V-I cadence draws the ear back to the tonic chord.

Here’s a cadence that visits the V7 first:

To me it looks like the V chord tosses out a rope, lassos the tonic and pulls.

It’s interesting to look at the notes in light of tonal gravity. In yesterday’s post, I laid out two rules of gravity on the lattice:

  1. Movement away from the center creates tension; movement toward the center gives a sense of resolution.
  2. The closer you are to the center in your journey, the stronger the sensations of tension and resolution are. The field is stronger closer in, just like real gravity.

There are four notes in the V7 chord.

  • The 5 is as close as you can get to the 1 (in harmonic space), so it creates a lot of tension. It is an overtonal note — that is, it appears in the overtone series of the 1. Pluck a string tuned to the tonic frequency, and the 5 will tend to be strongly present in the timbre of the sound. The way I see it, the ear is always searching for home. Every note gives it two clues — which direction is home, and how far away is it? The 5 gives a very strong signal, pulling the ear toward the tonic: “Home is this way, and it’s close! Come on!”
  • P1060030The 2 reinforces this conclusion. It’s farther out, so the signal is weaker, but it is still in the harmonic series of the 1, and it’s pretty close in. The little detective in the ear gets another clue.
  • Same with the 7, although now the effect is weaker. In traditional theory, the 7 is called a leading tone, and it’s thought to pull melodically toward the 1 — a sort of gravity in melodic space. It “wants” to resolve a half step upward. I feel this too, and I think the harmonic pull reinforces it further.
  • Then there’s the 4, which is what makes it a seventh chord (the 4 is a minor seventh of the 5). This is a reciprocal note, that is, it’s generated by division rather than multiplication. Like the 5, it points directly at the 1, from point-blank range. Reciprocal energy is different from overtonal energy. To me, it feels as though reciprocal notes are pushing toward the tonic — the message feels more like “Home is that way, now go!”

For the detective in the ear, the 4 slam dunks the case. The only reasonable conclusion is that home is located in that empty space between the 4 and the 5 on the lattice. Any other interpretation is much weaker. Every note in the V7 chord is pointing strongly to the 1, and when the notes collapse inward to the I chord, the resolution is completely satisfying.

I’ve heard a charming story about Beethoven. Apparently the composer was depressed and wouldn’t get out of bed. A friend came by and played some music, ended on a dramatic V7 chord, and sat down to wait. Beethoven finally had to get out of bed and play the tonic chord. Tough love! Don’t know if the story is true, but it certainly could be. The V7 is strong medicine.

When this particular chord shape appears somewhere else on the lattice, it can point so hard to its own center that the ear believes the tonic has moved. It’s as though the gravity of the planets is so strong that it can move the sun.

Next: Intervals

Read More

Posted by on Mar 11, 2013 in Consonance, Just Intonation, The Lattice, Tonal Gravity | 1 comment

Tonal Gravity

I believe that the great driving force in tonal music, that creates the drama and story of the music itself (independently of any lyrics), is the longing for home.

Home is the tonic. If a song is in the key of A, all the A’s in their various octaves will sound like home.

Although there are many exceptions, most music begins on the tonic, to show the ear what key the piece is in, and ends on the tonic, to bring the listener home again. In between, the music wanders, out and back again, creating tension and resolution.

One of the beauties of the lattice is that it shows a clear graphical display of this tension.

It’s as though the tonic creates a sort of gravitational field around itself. It acts a lot like real gravity. The chords and notes move in this gravitational field, like planets and moons around a sun. The gravitational field follows a few basic rules:

  1. Movement away from the center creates tension; movement toward the center gives a sense of resolution.
  2. Notes that are overtonal from the center, generated by multiplying, located to the right and up, will feel more resolved. Notes that are reciprocal, generated by dividing, to the left and down, will feel unresolved.
  3. The closer you are to the center in your journey, the stronger the sensations of tension and resolution are. The field is stronger closer in, just like real gravity.
  4. The closer together two notes are, the more consonant, or harmonious, they will be when sounded together. The farther apart they are, the more dissonant they will be, the more they will clash.

Roots generate local gravitational fields. I think of them as Jupiter to the tonic’s Sun. When the root is on the 5, for example, it shifts the gravity field to the east on the lattice, and the 2 and 7 become harmonious, consonant notes, rather than dissonant ones. The tonic still has great influence, so the entire chord feels unresolved — a 5 chord pulls very strongly toward the 1 chord, a property that is heavily relied upon in Western music. As long as the 5 is the root, though, the 2 and 7 will be consonant harmonies, because they are close to the 5 on the lattice.

Here is a movie to show how that works. The music starts with a tonic chord. Then, one at a time, the 2 and 7 are introduced. These notes are dissonant, and create a sense of tension against the tonic.

Then the root moves to the 5, and the character of the 2 and 7 changes. Now they form a major chord based on the 5, a harmonious configuration. They have become moons of Jupiter. Hear how the dissonance goes away? But there is still plenty of tension, as now there are three notes venturing away from the center, pulling the ear back toward home.

Then the root moves back to the 1, and the 2 and 7 collapse back in toward the center. There is a sense of arrival.

This movie illustrates another observation: consonance / dissonance and tension / resolution are not the same thing. They both relate to distance on the lattice, but they do not necessarily track together. When the root moves to the 5, the dissonance goes away, but there is a new tension, a drive to resolve toward the center. The ear remembers where home is, and longs for it.

These principles can be consciously used to create desired effects when writing and arranging. Resolution and consonance give the music beauty, and tension and dissonance give it teeth.

Next: Cadences

Read More